Table IV. Interatomic distances and standard deviations.

	Atom pair (No.)	Distance, A	σ, A		Atom pair (No.)	Distance, A	σ, A
$\mathrm{Ga}_{1} \mathrm{O}_{4}$ tetrahedron	$\mathrm{Ga}-\mathrm{O}_{\mathrm{I}}$	1.80	0.03	$\mathrm{GaII} \mathrm{O}_{6}$ octahedron	$\mathrm{Ga}-\mathrm{O}_{\mathrm{I}}(2)$	1.95	0.03
	$\mathrm{Ga}-\mathrm{O}_{11}(2)$	1.83	0.01		$\mathrm{Ga}-\mathrm{O}_{11}$	1.95	0.03
	$\mathrm{Ga}-\mathrm{O}_{\mathrm{III}}$	1.85	0.03		$\mathrm{Ga}-\mathrm{O}_{\mathrm{III}}$	2.02	0.03
	$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{11}(2)$	2.93	0.04		$\mathrm{Ga}-\mathrm{O}_{\mathrm{III}}(2)$	2.08	0.02
	$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\text {III }}$	3.13	0.04		$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{I}}$	3.04	0.01
	$\mathrm{O}_{\mathrm{II}}-\mathrm{O}_{\text {II }}$	3.04	0.01		$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{II}}(2)$	2.90	0.04
	$\mathrm{O}_{\mathrm{II}}-\mathrm{O}_{\mathrm{III}}(2)$	3.02	0.03		$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III}}(2)$	2.85	0.04
					$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III}}(2)$	2.67	0.04
					$\mathrm{O}_{\mathrm{II}}-\mathrm{O}_{\mathrm{III}}(2)$	2.89	0.03
					$\mathrm{O}_{\mathrm{III}}-\mathrm{O}_{\text {III }}(2)$	2.67	0.04
					$\mathrm{O}_{\mathrm{III}}-\mathrm{O}_{\mathrm{III}}$	3.04	0.01
Shortest Ga-Ga distances	$\mathrm{Ga}_{1}-\mathrm{Ga}_{1}(2)$	3.04	0.01	Averages	$\mathrm{Ga}_{1}-\mathrm{O}$	1.83	
	$\therefore \mathrm{Ga}_{11}-\mathrm{Ga}_{11}(2)$	3.04	0.01		$\mathrm{Ga}_{\text {II }}-\mathrm{O}$	2.00	
	- $\mathrm{Ga}_{\text {II }}-\mathrm{Ga}_{\text {II }}(2)$	3.11	0.01		$\mathrm{O}-\mathrm{O}$, octa-	2.84	
	$\mathrm{Ga}_{1}-\mathrm{Ga}_{11}$	3.28	0.01		hedron		
	$\mathrm{Ga}_{1}-\mathrm{Ga}_{\text {II }}(2)$	3.30	0.01		$0-0$, tetra-	3.02	
	$\mathrm{Ga}_{1}-\mathrm{Ga}_{\text {II }}(2)$	3.33	0.01		hedron		
	$\mathrm{Ga}_{\mathrm{I}}-\mathrm{Ga}_{\text {II }}(2)$	3.45	0.01				

Table V. Bond angles.

${ }^{\mathbf{a}}$ GaI and $\mathrm{GaII}^{\text {I }}$ in same plane.
in agreement with the observation ${ }^{18}$ that in ionic structures, the mutual repulsion of the positive ions tends to reduce the length of shared edges of anion polyhedra.

Because of the short b axis, there are two $\mathrm{O}_{\mathrm{I}}{ }^{2-}$ and two $\mathrm{O}_{\mathrm{III}}{ }^{2-}$ ions (along the b axis) at corners of an octahedron. The structure cannot possibly then have two $\mathrm{O}_{\mathrm{HI}}{ }^{2-}$ ions at the remaining corners of the octahedron, since these must lie in the mirror plane containing the $\mathrm{Ga}_{11}{ }^{3+}$ ion within the octahedron. Thus there is only one $\mathrm{O}_{\mathrm{II}}{ }^{2-}$ ion at a corner of the octahedron, the remaining corner being occupied by a third $\mathrm{O}_{\mathrm{II}}{ }^{2-}$ ion.

At the corners of the tetrahedron, there are two $\mathrm{O}_{\mathrm{II}}{ }^{2-}$ ions which are along the b axis, the other corners

[^0]being occupied by an $\mathrm{O}_{\mathrm{I}}{ }^{2-}$ and an $\mathrm{O}_{\mathrm{HI}}{ }^{2-}$ ion each lying in the mirror plane containing the Ga^{3+} ion within the tetrahedron.
Thus eách $\mathrm{O}_{\mathrm{I}}{ }^{2-}$ ion is at the corner of two octahedra and one tetrahedron; each $\mathrm{O}_{\mathrm{II}}{ }^{2-}$ ion is at the corner of one octahedron and two tetrahedra; and each OHII^{2-} ion is at the corner of three octahedra and one tetrahedron. If the octahedra and tetrahedra were regular, it would be doubtful that such a structure could exist, because the sums of the bond numbers of the bonds at all oxygen ions would not be 2 (see footnote reference 18). They would be: at $\mathrm{O}_{1}{ }^{2-}, 1 \frac{3}{4}$, at $\mathrm{O}_{\mathrm{Ir}^{2-}}{ }^{2}, 2$; and at $\mathrm{O}_{\mathrm{HI}}{ }^{2-}, 2 \frac{1}{4}$. However, the polyhedra are probably not regular. In fact, the four bonds to $\mathrm{O}_{\mathrm{II}}{ }^{2-}$ are the longest ones: $\mathrm{Ga}_{\mathrm{I}}-\mathrm{O}_{\mathrm{III}}=1.85 \mathrm{~A}, \mathrm{Ga}_{\mathrm{II}}-\mathrm{O}_{\mathrm{III}}=2.08$ (2) and 2.02

[^0]: ${ }^{\text {is }}$ L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd ed., Chap. 13, Sec. 6.

